Unless otherwise stated, all problems are from the text Reid: *Undergraduate Commutative Algebra*.

Assignment 1, due Wednesday January 20: # 1.5, 1.10, 1.13, 1.18, 1.19.

Assignment 2, due Monday January 25: # 2.3, 2.6, 2.7, 2.9, 2.15, 2.16.

Assignment 3, due Monday February 1: # 3.3, 3.4, 3.6, 3.10, 3.11.

Assignment 4, due Monday February 8: # 4.4, 4.5, 4.7, 4.12(i).

Assignment 5, due Monday February 15: # 5.2, 5.8, 5.9, 5.11.

Assignment 6, due Monday February 22: # 6.2, 6.4, 6.8, 6.9.

Assignment 7, due Wednesday March 3: # 7.2, 7.4, 7.7.

Midterm Exam, Friday March 5: Covers Chapters 1 through 7 of Reid.

Assignment 8, due Monday March 22: # 7.8, 7.10, 8.1, 8.2.

Assignment 9, due Friday April 2: # 8.3, 8.4, 8.6, 8.7.

The following problems are from Atiyah and MacDonald: *Introduction to Commutative Algebra*.

Assignment 10, due Friday April 9: # 2.1, 2.3, 2.4, 2.8.

Assignment 11, due Friday April 16: # 6.1(ii), 6.3(Artinian), 8.2.

Assignment 12, due Monday April 26:

1. Let A be a topological abelian group with the discrete topology. Show that $\phi : A \to \hat{A}$ is an isomorphism.

2. Let A be a ring with an ideal I, and let M be an A-module. Consider the I-adic topologies on A and M. Show that \hat{M} is an \hat{A}-module.

3. Let A be a ring with an ideal I, and let M be an A-module. Consider the I-adic topologies on A and M. Investigate the relationship between \hat{M} and $\hat{A} \otimes_A M$.