1. Let G be a compact abelian group. Then \hat{G} is a complete orthonormal set in $L^2(G)$.

2. Let G be a compact abelian group. Prove that the following are equivalent.

 (1) G is metrizable.

 (2) \hat{G} is countable.

 (3) G has a countable base of neighborhoods of e.

 (4) G is a closed subgroup of T^ω, the countably infinite Cartesian product of circle groups.

3. (a) Let G be a locally compact group, and let $f, g \in C_00(G)$. Then $f * g \in C_00(G)$.

 (b) Let $p, q \geq 1$ such that $1/p + 1/q = 1$. For $f \in L^p(G)$ and $g \in L^q(G)$, define

 $$ f * g(x) = \int_G f(y)g(y^{-1}x) \, d\lambda(y). $$

 Then $f * g$ exists and is an element of $C_0(G)$.

 (c) Let A be a measurable subset of G with $0 < \lambda(A) < \infty$. Then $A \cdot A$ has nonempty interior. (Hint: Consider χ_A.)

 (d) Let H be as closed subgroup of G. If H is not (locally) λ-null, then H is open.

4. Let G be a group and H be a subgroup. Prove that the characteristic function χ_H is of positive type.

5. Let G be a locally compact group and F be a positive functional on $L^1(G)$. Then

 $$ F(f) = \int_G f \phi d\lambda, \quad f \in L^1(G), $$

 for some continuous function ϕ of positive type on G. More specifically, let π be the unitary representation of G constructed in the proof of Theorem (3.22) and ξ be the cyclic vector chosen there. Then (1) is satisfied with $\phi(x) = \langle \pi(x)\xi, \xi \rangle$. (Hints: Let $\{u_\alpha\}$ be an approximate identity in $L^1(G)$. Then show that $\{u_\alpha^*\}$ is also an approximate identity. Thus

 $$ F(f) = \lim_{\beta} \lim_{\alpha} F(u_\beta^* f * u_\alpha). $$

 Next show that

 $$ F(u_\beta^* f * u_\alpha) = \int_G f(y) [\pi(y)\tilde{u}_\alpha, \tilde{u}_\beta] \, d\lambda(y). $$

 Passing to the limit on β, moving $\pi(y)$ to the right as $\pi(y^{-1})$ in the inner product, and then passing to the limit on α leads to the desired result.)
6. Let \(G \) be a locally compact group. A bounded, continuous function \(f \) on \(G \) is called \textit{almost periodic} if the set of translates \(\{ L_a f : a \in G \} \) of \(f \) has compact closure in the uniform norm on the space \(C_b(G) \) of bounded continuous functions on \(G \). Let \(AP(G) \) denote the set of almost periodic functions on \(G \).

(a) The set \(AP(G) \) is a closed subalgebra of \(C_b(G) \).

(b) If \(G = \mathbb{R}^n \) and \(f \) is a periodic continuous function on \(G \), then \(f \) is almost periodic.

(c) If \(G \) is abelian, then every character of \(G \) is almost periodic. Thus any linear combination of characters (called a “trigonometric polynomial”) is almost periodic.

Remark: If \(G \) is abelian, it can be shown that every almost periodic function on \(G \) is the uniform limit of trigonometric polynomials.

7. Let \(G \) be abelian. Give the group \(\hat{G} \) the discrete topology, creating the discrete group \(\hat{G}_d \), and let \(bG = (\hat{G}_d) \), a compact abelian group. Define \(\beta : G \to bG \) by

\[
(\gamma, \beta(x)) = (x, \gamma), \quad x \in G, \gamma \in \hat{G}.
\]

The group \(bG \), along with the map \(\beta \), is called the \textit{Bohr compactification} of \(G \).

(a) Prove that \(\beta \) is a continuous isomorphism of \(G \) onto a dense subgroup of \(bG \).

(Hints: Use the Pontryagin Duality Theorem or the Gelfand-Raikov Theorem to say that \(\hat{G} \) separates points of \(G \). To show \(\beta(G) \) is dense in \(bG \), let \(H \) be the closure of \(\beta(G) \). If \(H \neq bG \), then \(bG/H \) has a nontrivial character, which leads to a contradiction.)

(b) A function \(f \) on \(G \) is almost periodic if and only if it has the form \(f = g \circ \beta \) for some \(g \in C(bG) \).