MULTIPLICATIVE PROPERTIES OF JENSEN MEASURES

TAKASHI ITO AND BERT M. SCHREIBER

Abstract. It is shown that if ψ is a linear functional on a function algebra with $\psi(1) = 1$, and if ψ satisfies the Jensen inequality with respect to some finite nonnegative measure, then ψ is multiplicative.

Let A be a function algebra (closed, separating subalgebra of $C(X)$ containing the constants) on the compact space X, and let ψ be a nontrivial linear functional on A. We shall say that a finite, nonnegative measure μ on X is a Jensen measure for ψ if the Jensen inequality

$$|\psi(f)| \leq \exp \left(\int_X \log |f| \, d\mu \right), \quad f \in A,$$

holds for ψ and μ. It is a well-known theorem of Bishop [1], [2, §§2–5] that if ψ is multiplicative on A then there exists a Jensen representing measure μ for ψ (i.e., μ is a probability measure such that (1) holds and $\psi(f) = \int_X f \, d\mu, f \in A$). The purpose of this note is to point out the following converse to Bishop’s theorem, thereby filling a gap in the proof of Lemma 2.5.5 in [2].

Theorem. If μ is a Jensen measure for ψ, then μ represents a multiplicative linear functional ϕ on A such that $\psi = \phi(1)\phi$.

Proof. (1) implies the continuity of ψ with $\|\psi\| \leq 1$, so for $f \in A$ $\psi(ze^f)$ is an entire function of the complex variable z and $\psi(ze^f) = \sum_0^n \psi(f^n) z^n / n!$. If $\int_X f \, d\mu = 0$, then

$$|\psi(ze^f)| \leq \exp \left(\int_X \text{Re}(zf) \, d\mu \right) = \exp \left(\text{Re} z \int_X f \, d\mu \right) = 1,$$

so by Liouville’s theorem we have $\psi(ze^f) = \psi(1)$ for all z. In general, given $f \in A$ let $\alpha = \int_X f \, d\mu$. Then

$$\psi(ze^f) = \psi(\exp(z(f - \alpha \|\mu\|^{-1}))) \exp(z\alpha \|\mu\|^{-1}) = \psi(1) \exp(z\alpha \|\mu\|^{-1}).$$

Thus $\sum_0^n \psi(f^n) z^n / n! = \psi(1) \sum_0^n (\alpha \|\mu\|^{-1})^n z^n / n!$, so

1 Received by the editors February 6, 1970.

2AMS 1969 subject classifications. Primary 4655.

3Key words and phrases. Function algebra, Jensen inequality, multiplicative linear functional.

4Research of the second author partially supported by NSF Grant GP-13741.
(2) \[\psi(f^n) = \psi(1)^n \left(\frac{1}{\mu} \int_X f \, d\mu \right)^n, \quad n = 0, 1, 2, \ldots, f \in A. \]

Clearly \(\psi(1) \neq 0 \) if \(\psi \) is nontrivial, and from (1) we have \(e^t |\psi(1)| \leq e^t |\mu| \) for all real \(t \). Hence \(\mu \) must be a probability measure, so (2) takes the form \(\psi(f^n) = \psi(1)^n \int_X f \, d\mu \). Set \(\phi(f) = \psi(1)^{-1} \psi(f), \quad f \in A. \) Then \(\phi(f) = \int_X f \, d\mu \) and

\[\phi(f^n) = \psi(1)^{-n} \psi(f^n) = (\phi(f))^n, \quad n = 0, 1, 2, \ldots, f \in A. \]

It follows easily that \(\phi \) is multiplicative on \(A \).

Combining this result with Bishop’s theorem yields

Corollary. Let \(\psi \) be a linear functional on \(A \) such that \(\psi(1) = 1 \). Then \(\psi \) is multiplicative on \(A \) if and only if there exists a Jensen representing measure for \(\psi \).

References

Wayne State University, Detroit, Michigan 48202