# Fatih
Celiker

#
Professor of Mathematics

### Positions

Wayne State University,
Detroit, MI: 2018-Present, Professor, Department of Mathematics.

Wayne State University,
Detroit, MI: 2012-18, Associate Professor, Department of Mathematics.
Wayne State University,
Detroit, MI: 2006-12, Assistant Professor, Department of Mathematics.

Stanford University,
Stanford, CA: 2005-06, Postdoctoral Scholar, Institute for Computational and
Mathematical Engineering.

University of Minnesota,
Minneapolis, MN: 2000-05, Teaching and Research Assistant, Department of Mathematics.

Army High Performance Computing and Research Center
(AHPCRC),
Minneapolis, MN: 2003-05, Research Assistant.

Bogazici University,
Istanbul, Turkey: 1998-2000, Teaching Assistant, Department of Mathematics.

### Education

**
University of Minnesota**,
Minneapolis, MN, 2000-05.
Ph.D. in Mathematics. Advisor: Bernardo Cockburn

Bogazici University,
Istanbul, Turkey, 1998-00. M.S. in Mathematics.

**
Bogazici University**, Istanbul,
Turkey, 1993-98.
B.S. in Mathematics Education.

### Research
Interests

Numerical analysis;
Analysis and implementation of discontinuous Galerkin methods for solid and structural mechanics;
Superconvergence phenomena;
Scientific computing;
Nonlocal problems and peridynamics.

**
Publications in Refereed Journals**

**25.** B. Aksoylu, F. Celiker, and O. Kilicer,
*Nonlocal operators with local boundary conditions in higher dimensions*,
Advances in Computational Mathematics,
doi.

**24.** M.F. Karaaslan, F. Celiker, and M. Kurulay,
*A hybridizable discontinuous Galerkin method for a class of fractional boundary value problems*,
J. of Computational and Applied Mathematics, 333 (2018) 20-27,
doi.

**23.** H. Zhu and F. Celiker,
*Nodal superconvergence of the LDG method for singularly perturbed problems*,
J. Computational and Applied Mathematics, 330 (2018), 95-116,
doi.

**22.** B. Aksoylu, H. Beyer, and F. Celiker,
*Theoretical foundations of incorporating local boundary conditions into nonlocal problems,
*Reports on Mathematical Physics, 80(1) (2017), 39-71,
doi.

**21.** B. Aksoylu, H. Beyer, and F. Celiker,
*Application and implementation of incorporating local boundary conditions into nonlocal problems,
*J. Numerical Functional Analysis and Optimization, 38(9) (2017), 1077-1114,
doi.

**20.** B. Aksoylu and F. Celiker,
*Nonlocal problems with local Dirichlet and Neumann boundary conditions*,
J. of Mechanics of Materials and Structures, 12(4) (2017), 425-437,
doi.

**19.** M.F. Karaaslan, F. Celiker, and M. Kurulay,
* Approximate solution of the Bagley-Torvik equations by hybridizable discontinuous Galerkin methods*,
Applied Mathematics and Computation, 285 (2016), 51-58,
doi.

**18.** H. Zhu and F. Celiker,
*Error Analysis of an HDG method for a distributed optimal control problem*,
J. of Computational and Applied Mathematics, 307 (2016), 2-12,
doi.

**17.** H. Beyer, B. Aksoylu, and F. Celiker,
*On a class of nonlocal wave equations from applications*,
J. of Mathematical Physics, 57, 062902 (2016),
doi.

**16.** F. Celiker and L. Fan, *HDG methods for Naghdi
arches***, **J. Sci. Comput., (2014)59, 217-246,
doi.

**15.** F. Celiker, L. Fan, S. Zhang, and Z. Zhang,
*Locking-free optimal discontinuous Galerkin methods for a Naghdi-type arch model*,
J. Sci. Comp., 52(2012), 49-84,
doi.

**14.** F. Celiker, B. Cockburn, and K. Shi,
*A projection-based error analysis of HDG methods for Timoshenko beams*,
Math. Comp., 81(2012), 131-151,
doi.

**13.** F. Celiker, Z. Zhang, and H. Zhu,
*Nodal superconvergence of SDFEM for singularly perturbed problems*,
J. Sci. Comp., 2012(50), 405-433,
doi.

**12.** E. Celebi, H. Kingravi, and F. Celiker,
*Comments on "On approximating Euclidean metrics by weighted t-Cost distances in arbitrary dimension"*,
Pattern Recognition Letters, 33(2012), 1422-1425,
doi.

**11.** F. Celiker, L. Fan, and Z. Zhang,
Element-by-element post-processing of discontinuous Galerkin methods for Naghdi arches
Int. J. of Numer. Anal. and Model, 8(2011) 391-409,
doi.

**10.** H. Farhat, F. Celiker, T. Singh, J.S. Lee,
A hybrid lattice Boltzmann model for surfactant-covered droplets,
Soft Matter, 7(2011), 1968-1985,
doi.

**9.** E. Celebi, F. Celiker, and H. Kingravi,
*On Euclidean norms*,
Pattern Recognition, 44(2011) 278-283,
doi.

**8.** F. Celiker, B. Cockburn, and K. Shi,
*Hybridizable discontinuous Galerkin methods for Timoshenko beams*,
J. Sci. Comput., 44(2010), 1-37,
doi.

**7.** E. Celebi, H.A. Kingravi, and F. Celiker,
*Fast colour space transformations using minimax approximations*,
IET Image Processing, 4(2010), 70-80,
doi.

**6.** E. Celebi, H. Kingravi, R. Lukac, and F. Celiker,
*Cost-Effective Implementation of Order-Statistics Based Vector Filters Using Minimax Approximations*,
J. of the Optical Society of America, 26(6): 1518-1524, 2009,
doi.

**5.** A.T. Eyck, F. Celiker, and A. Lew,
*Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: Analytical estimates*,
Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 33-40, 2989-3000,
doi.

**4.** A.T. Eyck, F. Celiker, and A. Lew,
*Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity:
Motivation, formulation and numerical examples*,
Comput. Methods Appl. Mech. Engrg. 197 (2008), 3605-3622,
doi.

**3.** F. Celiker and B. Cockburn,
*Superconvergence of the numerical traces of discontinuous Galerkin
and hybridized methods for convection-diffusion problems in one space dimension*,
Math. Comp., 76(2007), 67-96,
doi.

**2.** F. Celiker, B. Cockburn, and H.K. Stolarski,
*Locking-free optimal discontinuous Galerkin methods for Timoshenko beams*,
SIAM J. Numer. Anal., 44(2006), 2297-2325,
doi.

**1.** F. Celiker and B. Cockburn,
*Element-by-element postprocessing of discontinuous Galerkin methods for Timoshenko beams*,
J. Sci. Comput., 27(2006), 177-187,
doi.

**
Book Chapters**

**1.** B. Aksoylu, F. Celiker, and O. Kilicer,
*Nonlocal operators with local boundary conditions: an overview*,
Handbook of Nonlocal Continuum Mechanics for Materials and Structures, Springer,
doi.

**
Peer-reviewed Conference Proceedings**

**3.** B. Aksoylu and F. Celiker,
*Comparison of nonlocal operators utilizing nonlocal perturbation analysis*,
In: B. Karasozen et al. (ed.) Numerical Mathematics and Advanced Applications ENUMATH 2015,
Lecture Notes in Computational Science and Engineering, vol. 112, 589-606. Springer(2016),
doi.

**2.** M. E. Celebi, H. Kingravi, and F. Celiker,
* Accelerating Color Space Transformations Using Numerical Approximations*,
in Proc. IEEE Int. Conf. on Image Processing (ICIP 2010), 1349-1352, September 26-29, 2010,
doi.

**1.** F. Celiker {\em et al}.,
* Discontinuous Galerkin Methods for Timoshenko Beams*,
Proceedings of the European Conference on Numerical Mathematics 2003,
In: Numerical Mathematics and Advanced Applications: ENUMATH 2003;
Editors: M. Feistauer, V. Dolejsi, P. Knobloch, K. Nazjar; Springer, 221-231, 2004,
doi.

**
Ph.D. Thesis**

*Discontinuous Galerkin Methods for Structural Mechanics,*
School of Mathematics, University of Minnesota, Minneapolis, MN, 2005.

**
Awards and Honors**

SSTEP (Student Success Through Evidence-based Pedagogies) subgrant under
National Science Foundation-WIDER (Widening Implementation and Dissemination of Evidence-based Reforms) grant:
Student-Student and Student-Instructor Interaction Intensive Teaching
Strategies for two Fundamental Proof-Based Mathematics Courses.
Jointly with C. Lebiedzik and P. Wang, 7/1/16-6/30/18, $45,516.

National Science Foundation Grant, DMS-1115280:
Hybridizable discontinuous Galerkin methods for higher order partial differential equations,
9/1/2011-8/31/2014, $135,514.

Wayne State University, College of Liberal Arts and Sciences Excellence in Teaching Award, 2010.

Institute of Mathematics and its Applications (IMA) General Membership Award,
9/1/10-12/31/10, $9,300.

Young Researcher Fellowship Award,
Third MIT Conference on Computational Fluid and Solid Mechanics, 2005.