PositionsWayne State University, Detroit, MI: 2012Present, Associate Professor, Department of Mathematics. Wayne State University, Detroit, MI: 200612, Assistant Professor, Department of Mathematics. Stanford University, Stanford, CA: 200506, Postdoctoral Scholar, Institute for Computational and Mathematical Engineering. University of Minnesota, Minneapolis, MN: 200005, Teaching and Research Assistant, Department of Mathematics. Army high performance computing and research center (AHPCRC), Minneapolis, MN: 200305, Research Assistant. Bogazici University, Istanbul, Turkey: 19982000, Teaching Assistant, Department of Mathematics. EducationUniversity of Minnesota, Minneapolis, MN, 200005. Ph.D. in Mathematics. Advisor: Bernardo Cockburn Bogazici University, Istanbul, Turkey, 199800. M.S. in Mathematics. Bogazici University, Istanbul, Turkey, 199398. B.S. in Mathematics Education. Research InterestsNumerical analysis; Analysis and implementation of discontinuous Galerkin methods for solid and structural mechanics; Superconvergence phenomena; Scientific computing; Nonlocal problems and peridynamics. Publications in Refereed Journals25. B. Aksoylu, F. Celiker, and O. Kilicer, Nonlocal operators with local boundary conditions in higher dimensions, submitted. 24. M.F. Karaaslan, F. Celiker, and M. Kurulay, A hybridizable discontinuous Galerkin method for a class of fractional boundary value problems, to appear in J. of Computational and Applied Mathematics. 23. H. Zhu and F. Celiker, Nodal superconvergence of the LDG method for singularly perturbed problems, J. Computational and Applied Mathematics, 330 (2018), 95116, doi. 22. B. Aksoylu, H. Beyer, and F. Celiker, Theoretical foundations of incorporating local boundary conditions into nonlocal problems, Reports on Mathematical Physics, 80(1) (2017), 3971, doi. 21. B. Aksoylu, H. Beyer, and F. Celiker, Application and implementation of incorporating local boundary conditions into nonlocal problems, J. Numerical Functional Analysis and Optimization, 38(9) (2017), 10771114, doi. 20. B. Aksoylu and F. Celiker, Nonlocal problems with local Dirichlet and Neumann boundary conditions, J. of Mechanics of Materials and Structures, 12(4) (2017), 425437, doi. 19. M.F. Karaaslan, F. Celiker, and M. Kurulay, Approximate solution of the BagleyTorvik equations by hybridizable discontinuous Galerkin methods, Applied Mathematics and Computation, 285 (2016), 5158, doi. 18. H. Zhu and F. Celiker, Error Analysis of an HDG method for a distributed optimal control problem, J. of Computational and Applied Mathematics, 307 (2016), 212, doi. 17. H. Beyer, B. Aksoylu, and F. Celiker, On a class of nonlocal wave equations from applications, J. of Mathematical Physics, 57, 062902 (2016), doi. 16. F. Celiker and L. Fan, HDG methods for Naghdi arches, J. Sci. Comput., (2014)59, 217246, doi. 15. F. Celiker, L. Fan, S. Zhang, and Z. Zhang, Lockingfree optimal discontinuous Galerkin methods for a Naghditype arch model, J. Sci. Comp., 52(2012), 4984, doi. 14. F. Celiker, B. Cockburn, and K. Shi, A projectionbased error analysis of HDG methods for Timoshenko beams, Math. Comp., 81(2012), 131151, doi. 13. F. Celiker, Z. Zhang, and H. Zhu, Nodal superconvergence of SDFEM for singularly perturbed problems, J. Sci. Comp., 2012(50), 405433, doi. 12. E. Celebi, H. Kingravi, and F. Celiker, Comments on "On approximating Euclidean metrics by weighted tCost distances in arbitrary dimension", Pattern Recognition Letters, 33(2012), 14221425, doi. 11. F. Celiker, L. Fan, and Z. Zhang, Elementbyelement postprocessing of discontinuous Galerkin methods for Naghdi arches, Int. J. of Numer. Anal. and Model, 8(2011) 391409, doi. 10. H. Farhat, F. Celiker, T. Singh, J.S. Lee, A hybrid lattice Boltzmann model for surfactantcovered droplets, Soft Matter, 7(2011), 19681985, doi. 9. E. Celebi, F. Celiker, and H. Kingravi, On Euclidean norms, Pattern Recognition, 44(2011) 278283, doi. 8. F. Celiker, B. Cockburn, and K. Shi, Hybridizable discontinuous Galerkin methods for Timoshenko beams, J. Sci. Comput., 44(2010), 137, doi. 7. E. Celebi, H.A. Kingravi, and F. Celiker, Fast colour space transformations using minimax approximations, IET Image Processing, 4(2010), 7080, doi. 6. E. Celebi, H. Kingravi, R. Lukac, and F. Celiker, CostEffective Implementation of OrderStatistics Based Vector Filters Using Minimax Approximations, Journal of the Optical Society of America, 26(6): 15181524, 2009, doi. 5.
A.T. Eyck, F. Celiker, and
A. Lew, Adaptive stabilization of discontinuous Galerkin methods for
nonlinear elasticity: Analytical estimates, Comput. Methods Appl. Mech. Engrg.
197 (2008), no. 3340, 29893000,
doi. Book Chapters1 . B. Aksoylu, F. Celiker, and O. Kilicer, Nonlocal operators with local boundary conditions: an overview, to appear in Handbook of Nonlocal Continuum Mechanics for Materials and Structures, Springer.Peerreviewed Conference Proceedings3. B. Aksoylu and F. Celiker, Comparison of nonlocal operators utilizing nonlocal perturbation analysis. In: B. Karasozen et al. (ed.) Numerical Mathematics and Advanced Applications ENUMATH 2015, Lecture Notes in Computational Science and Engineering, vol. 112, 589606. Springer (2016), doi. 2. M. E. Celebi, H. Kingravi, and F. Celiker, Accelerating Color Space Transformations Using Numerical Approximations, in Proc. IEEE Int. Conf. on Image Processing (ICIP 2010), 13491352, September 26–29 2010, doi. 1. F. Celiker {\em et al}.,
Discontinuous Galerkin Methods for Timoshenko Beams, Ph.D. Thesis Discontinuous Galerkin Methods for Structural Mechanics, School of Mathematics, University of Minnesota, Minneapolis, MN, 2005. Awards and Honors National Science Foundation Grant, DMS1115280: Hybridizable discontinuous Galerkin methods for higher order partial differential equations, 9/1/20118/31/2014, $135,514. Wayne State University, College of Liberal Arts
and Sciences Excellence in Teaching Award, 2010.
