Write your solutions in a blue book. To receive full credit you must show all work. You are allowed to use an approved graphing calculator unless otherwise indicated. There are 15 problems worth a total of 200 points. The time limit is 2\frac{1}{2} hours.

1. (10 points) Use the definition of the derivative to differentiate the following function.
 \[f(x) = \frac{x}{1 - 3x} \]

2. (7 points each) Find the exact value of each of the following limits. Write “\(\infty\),” “\(-\infty\),” or “does not exist” if appropriate. It is particularly important to show your work on this problem.
 (a) \(\lim_{x \to 1} \frac{3x - 3}{x^2 + 5x - 6}\)
 (b) \(\lim_{x \to -\infty} \left(e^x + \frac{x - 7}{13x + 5} \right)\)
 (c) \(\lim_{x \to -\infty} \left(\sqrt{3x^2 + x} - \sqrt{3} \cdot x \right)\)

3. (8 points each) Differentiate the following functions.
 (a) \(f(x) = x^3 \ln x\)
 (b) \(g(x) = \frac{e^x}{\arctan x}\)
 (c) \(h(x) = \cos\left(\tan(\sqrt{x})\right)\)

4. Evaluate the following integrals.
 (a) (8 points) \(\int \frac{x^3 + 2x^2 + 3x - 4}{x^2} \, dx\)
 (b) (8 points) \(\int x^2 e^{x^3} \, dx\)
 (c) (9 points) \(\int_0^8 \left(x + \cos(2\pi x) \right) \, dx\)

5. (10 points) Find \(\frac{dy}{dx}\) and \(\frac{d^2 y}{dx^2}\) at the point (2,1) on the curve \(x^2 + 2xy - y^2 = 7\).
6. (10 points) A block of ice maintains the shape of a cube as it melts at the constant rate of 3 cubic inches per minute. Find the rate at which the surface area of the cube is changing when the side of the cube is 12 inches long. Hint: Recall that a cube has six faces.

7. (10 points) A ball is thrown directly downward with initial downward velocity \(V \) from a point 144 feet above the ground. It accelerates downward at the rate of 32 feet per second per second.

(a) Find the height \(h \) of the ball \(t \) seconds after it is released. Express \(h \) in terms of \(V \).

(b) Find the initial velocity \(V \) if the ball reaches the ground in exactly 2 seconds.

8. (10 points) A certain government decides at 8 AM on January 1 to liquidate (sell) its holdings of US treasury bills continually at the rate of \(R \) dollars worth of bills per hour where \(R = 10,000,000 + 600,000t^2 \), where \(t \) is the time measured in hours, starting with \(t = 0 \) at 8 AM. Find the total value of the bills it liquidates by 10 AM on January 3, fifty hours later.

9. (10 points) The volume \(V \) of a spherical balloon is given by the formula \(V = \frac{4\pi r^3}{3} \) where \(r \) is the radius of the balloon. When \(r \) is given in inches, \(V \) will be in cubic inches.

(a) Find the average rate of change in the volume of the balloon, as a function of its radius, as the radius is increased from \(r = 10 \) inches to \(r = 12 \) inches. Be sure to give proper units.

(b) Find the instantaneous rate of change in the volume of the balloon as a function of its radius when \(r = 11 \) inches. Be sure to give proper units.

10. (10 points) A continuous, increasing function \(f \) takes on the values indicated in the table below. Use a Riemann sum to give a lower estimate for \(\int_{0}^{15} f(x) \, dx \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>10</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>
11. (10 points) The graph of a function f is shown below.

For each condition listed, find all values of x in the interval $[-4, 4]$ that have the stated property.

(a) $f'(x) > 0$.
(b) $f'(x) = 0$.
(c) $f'(x)$ does not exist.

12. (10 points) The function g is defined by $g(x) = \int_{0}^{x} f(t) \, dt$, $0 \leq x \leq 10$ where the graph of f is shown.

Sketch the graph of g. Be sure to indicate concavity, critical points and intervals of increase and decrease.
13. (10 points) Find the maximum and minimum values of the function
\[h(x) = 2x^3 - 33x^2 + 144x \]
on [0, 10].

14. (10 points) Sketch the graph of ONE function \(f \) that has ALL of the following properties.

(i) \(f(x) \) is defined for all real numbers \(x \).
(ii) \(f \) is not continuous at \(x = 5 \), but \(f \) is continuous at all other points.
(iii) \(f \) is not differentiable at \(x = 1 \) or \(x = 5 \), but \(f \) is differentiable at all other points.
(iv) \(f \) is increasing on \([1, 5)\)
(v) \(\lim_{x \to -\infty} f(x) = -3 \)
(vi) \(\lim_{x \to 1} f(x) = 2 \)
(vii) \(\lim_{x \to 5^-} f(x) = \infty \)
(viii) \(\lim_{x \to 5^+} f(x) = -\infty \)
(ix) \(\lim_{x \to \infty} f(x) = 4 \)

15. (20 points) Sketch the graph of the function \(f \) on the interval \([0, 2\pi]\),
based on the following information. Show intervals of increase and decrease, and concavity. Label all local maxima and minima and points of inflection.

(a) \(f'(x) = \sin x + \frac{1}{2} \)
(b) \(f''(x) = \cos x \)
(c) \(f(0) = 1 \)
(d) \(f(\pi) \approx 4.57 \)
(e) \(f(2\pi) \approx 4.14 \)