(a) Let $a_0 = 1$ and define $a_n = \frac{10 + a_{n-1}}{3}$ for all integers $n \geq 1$. Use the monotone convergence theorem to prove that a_n is a convergent sequence. Then find $\lim_{n \to \infty} a_n$.

(b) Let a_n be a bounded sequence. Prove that $\liminf_{n \to \infty} a_n \leq \limsup_{n \to \infty} a_n$.

(c) Give an example of a bounded sequence where the inequality from party (b) is strict. That is, define a bounded sequence a_n such that $\liminf_{n \to \infty} a_n < \limsup_{n \to \infty} a_n$. No need for a proof here; just define the sequence.
(a) Let $a_n = \frac{3n - 2}{2n + 1}$. Prove that a_n is Cauchy using the definition of Cauchy.

(b) Prove that if a sequence a_n is Cauchy, then a_n is bounded.
Topic 7: Limits of functions

(a) Find the following limit, and prove that it is correct: \(\lim_{x \to 2} x^3 \).

(b) Define functions \(f \) and \(g \) such that \(\lim_{x \to \infty} f(x)g(x) \) exists (finite), but either \(\lim_{x \to \infty} f(x) \) does not exist or \(\lim_{x \to \infty} g(x) \) does not exist. You do not need to prove this.
Topic 8: Limit theorems

(a) Assume that \(\lim_{x \to \infty} f(x) = L \) for some \(L \in \mathbb{R} \). Prove that there exists \(M > 0 \) and \(R > 0 \) such that \(|f(x)| \leq M \) for all \(x \geq R \).

(b) Assume that \(\lim_{x \to 0} f(x) = \infty \). Prove that \(\lim_{x \to 0} \frac{1}{f(x)} = 0 \).