HW 6 §7 #1a,c,e, 5
§8 #1,2

(a) \(V(y) = (x) \)

\[x' = x \Rightarrow x = x_0 e^t \]
\[y' = y \Rightarrow y = y_0 e^t \]

Then \(\frac{y}{x} = \frac{y_0}{x_0} \) is constant.

(\(\theta \) is an unstable node)

(c) \(V(y) = (2y, -x) \)

\[x'' = (2y)' = -2x \]

So \(p(x) = \int -2x \, dx = x^2 \)

is our "potential energy".

Then \(\frac{1}{2} (x')^2 + x^2 = \frac{1}{2} (2y)^2 + x^2 = 2y^2 + x^2 \)

is constant.

(\(\theta \) is a center (stable))

(e) \(V(y) = (x) \)

\[x' = x \Rightarrow x = x_0 e^t \]
\[y' = -y \Rightarrow y = y_0 e^{-t} \]

So \(xy = x_0 y_0 \) is constant

Saddle (unstable)
For Figure 7.4 in the book

\[C = \#ABC - \#ACB = 3 - 3 = 0 \]

\[I_1 = \#AB - \#BA \text{ outside} = 2 - 1 = 1 \]

\[I_2 = \#AB - \#BA \text{ inside} = 1 - 0 = 1 \]

So \(C = I_1 - I_2 \) for the annulus.

In general, let \(c_1 \) and \(c_2 \) be edges or sequences of edges which connect the inner and outer circles, as below:

These split the annulus into two cells

Then the Index Lemma applies to each cell, so we get

\[
\text{Content (D}_1\text{)} = I'_1 + I(c_1) - I'_2 + I(c_2)
\]

\[
\text{Content (D}_2\text{)} = I''_1 - I(c_1) - I''_2 - I(c_2)
\]

where \(I(c_1), I(c_2) \) is the index along \(c_1 \) and \(c_2 \).

So

\[
\text{Content (Annulus)} = \text{Content (D}_1\text{)} + \text{Content (D}_2\text{)}
\]

\[
= I'_1 - I'_2 + I''_1 - I''_2
\]

\[
= I_1 - I_2
\]

Since \(I(c_1) \) and \(I(c_2) \) cancel.
\(V(x) = (1-x^2) \) points due north when \(y=0 \) and \(1-x^2>0 \).

(a) On \(x^2+y^2=2x \) this requires \(x=0 \) or \(2 \) and \(1-x^2>0 \), i.e. \(x=y=0 \).

Before (9), \(y>0 \), so \(V \) points in region A, and after (9), \(y<0 \), so \(V \) points into region B.

Hence \(W = +1 \).

(b) On \(x^2+y^2=-2x \), again (9) is the only place \(V \) points north.

Before (9), \(y<0 \), and after (9), \(y>0 \), so we have a BA transition. \(W = -1 \).

(c) On \(x^2+y^2=2y \), \(y=0 \) gives \(x=0 \) so (9) is again the only north pointing point. Before (9), and after (9), \(y>0 \), so we have an AA non-transition. \(W = 0 \).

(d) On \(x^2+y^2=-2y \), similarly, (9) is the only point where \(V \) points north, and \(y>0 \) both before and after this, so \(W = 0 \).
2. \(V(y) = \left(\frac{y(x^2-1)}{x(y^2-1)} \right) \) points due north when

\[(y = 0 \text{ or } x = \pm 1) \text{ and } x(y^2-1) > 0 \] (shaded below)

\[
\begin{array}{c|c|c}
\text{x-coord} & + & - & + \\
\hline
y=0 & + & - & y=1 \\
\hline
y=1 & - & + & y=0 \text{ (pos where shaded)} \\
\hline
y=-1 & - & + & y=1 \\
\hline
x=1 & - & + & x=0 \\
\hline
x=-1 & + & - & x=1 \\
\hline
\end{array}
\]

(a) \[x^2 + y^2 - 2x - 2y + 1 = 0 \]
\[(x-1)^2 + (y-1)^2 = 1 \]

One due north point \((1, \frac{1}{2})\). \(AB \) so \(W = 1\)

(b) \[x^2 + y^2 + x + y = \frac{1}{2} \]
\[(x + \frac{1}{2})^2 + (y + \frac{1}{2})^2 = 1 \]

North pointing points:
\[
\begin{pmatrix}
-1 \\
(\sqrt{3} - \frac{1}{2})
\end{pmatrix} \quad \text{B to A}
\]
\[
\begin{pmatrix}
-\sqrt{3} - 1/2 \\
0
\end{pmatrix} \quad \text{A to B}
\]

W = 0

(c) \((-1,0)\) only \(W = -1\)

(d) \(\pm \frac{1}{\sqrt{3}}\) and \((-2,0)\) \(W = 3\)