Characteristic Classes in K-Theory
Connective K-theory of BG, G Compact Lie

Robert Bruner
Department of Mathematics
Wayne State University

Topology Seminar
Universitetet i Bergen
10 August 2011
Outline

1. Notation
2. Tori
3. Special Unitary Groups
4. Unitary Groups
5. Symplectic Groups
6. Orthogonal Groups
7. Special Orthogonal Groups
For tori and ‘symplectic tori’ we have:

- $RU(T^n) = \mathbb{Z}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$
- $RU(Sp(1)^n) = \mathbb{Z}[s_1, \ldots, s_n]$

If λ_i is the i^{th} exterior power of the defining representation, then:

- $RU(Sp(n)) = \mathbb{Z}[\lambda_1, \ldots, \lambda_n]$
- $RU(SU(n)) = \mathbb{Z}[\lambda_1, \ldots, \lambda_{n-1}]$
- $RU(U(n)) = \mathbb{Z}[\lambda_1, \ldots, \lambda_n, \lambda_n^{-1}]$
- $RU(O(n)) = \mathbb{Z}[\lambda_1, \ldots, \lambda_n]/(\lambda_n^2 - 1, \lambda_i \lambda_n - \lambda_{n-i})$
- $RU(SO(2n+1)) = \mathbb{Z}[\lambda_1, \ldots, \lambda_n]$ with $\lambda_{n+i} = \lambda_{n+1-i}$
- $RU(SO(2n)) = \mathbb{Z}[^n\lambda_1, \ldots, \lambda_{n-1}, ^{n+}\lambda_n, ^{-}\lambda_n]/R$
 with $\lambda_{n+i} = \lambda_{n-i}$, $\lambda_n = ^{n+}\lambda_n + ^{-}\lambda_n$ and $R = ((^n\lambda_n + \sum_i \lambda_{n-2i})(^{-}\lambda_n + \sum_i \lambda_{n-2i}) - (\sum \lambda_{n-1-2i})^2)$
\[RU(T^n) = \mathbb{Z}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}] \]

All simple representations but the trivial one are complex. The integral cohomology ring is

\[H^* BT^n = \mathbb{Z}[y_1, \ldots, y_n] \]

with \(y_i = c_1(t_i) \).

Theorem

\[ku^* BT^n = ku^* [[y_1, \ldots, y_n]] \]

with \(y_i = c_1^{ku}(t_i) \) and

\[ku^* T^n = \text{MRees}(RU(T^n)) = \frac{ku^*[y_1, \bar{y}_1 \ldots, y_n, \bar{y}_n]}{(vy_i\bar{y}_i = y_i + \bar{y}_i)} \]

with \(\bar{y}_i = c_1^{ku}(t_i^{-1}) \mapsto -y_i/(1 - vy_i) \).
The calculation of ku_T^n uses the pullback square

$$
\begin{array}{c}
ku_T^n \rightarrow KU_T^n \\
\downarrow \\
ku^*BT^n \rightarrow KU^*BT^n
\end{array}
$$

We have the relations $t_i = 1 - vy_i$ and $t_i^{-1} = 1 - v\bar{y}_i$, hence

$$KU_T^n = KU^*[t_1^{\pm 1}, \ldots, t_n^{\pm 1}] \cong KU^*[y_1, \bar{y}_1, \ldots, y_n, \bar{y}_n]/R,$$

where R is the ideal generated by the relations $vy_i\bar{y}_i = y_i + \bar{y}_i$. Then

$$ku_T^n = ku^*[[y_1, \ldots, y_n]] \cap KU^*[y_1, \bar{y}_1, \ldots, y_n, \bar{y}_n]/R$$
Real connective K-theory

\(H^*BT^n \) is free over \(E[Sq^2] = H^*C\eta \), and \(ko \land C\eta = ku \).

Hence, the Adams spectral sequence for \(ko^*BT^n \) collapses and is concentrated in even degrees.

Hence \(\eta \) acts trivially and the \(\eta - c - R \) sequence is just a short exact sequence

\[
0 \longrightarrow ko^*BT^n \xrightarrow{c} ku^*BT^n \xrightarrow{R} ko^{*+2}BT^n \longrightarrow 0
\]

Complex conjugation acts by

- \(\tau(v) = -v \)
- \(\tau(y_i) = \tau \left(\frac{1 - t_i}{v} \right) = \frac{1 - t_i^{-1}}{-v} = -\overline{y}_i \)
The Bockstein differential cR is then exact and ko^*-linear, hence $2v^2$ linear. But ku^*BT^n is 2-torsion-free, so cR is v^2-linear. Hence

$$v^2 cR(x) = cR(v^2 x) = cr(vx) = (1 + \tau)(vx) = vx - v\tau(x)$$

or

$$cR(x) = \frac{x - \tau(x)}{v}$$

Theorem

$$ko^*_T = (ku^*_T)^C_2 \text{ where } C_2 \text{ acts by conjugation.}$$

Proof.

$$ko^*_T = \text{im}(c) = \ker(R) = \ker(vcR) = \ker(1 - \tau).$$
\[RU(SU(n)) = \mathbb{Z}[\lambda_1, \ldots, \lambda_{n-1}] \]

We have \(\overline{\lambda_i} = \lambda_{n-i} \), so the \(\lambda_i \) are all complex unless \(n = 2m \), when \(\lambda_m \) is real if \(m \) is even and quaternionic if \(m \) is odd. The integral cohomology is

\[H^* BSU(n) = \mathbb{Z}[c_2, \ldots, c_n] \]

with \(c_i = c_i(\lambda_1) \). The connective complex \(K \)-theory is easy to compute.

Theorem

\[ku^* BSU(n) = ku^*[[c_2, \ldots, c_n]] \text{ and } ku^*_SU(n) = \text{MRees}(RU(SU(n))) = ku^*[c_2, \ldots, c_n]. \]
Proof.

Since $H^* \text{BSU}(n)$ is concentrated in even degrees, the Atiyah-Hirzebruch spectral sequence implies $ku^* \text{BSU}(n)$ must be the complete ku^* algebra freely generated by c_2, \ldots, c_n.

In $KU^*_{\text{SU}(n)}$, we have

$$
\lambda_i = \sum_{j=0}^{i} (-1)^j \binom{n-j}{n-i} c_j^R = \sum_{j=0}^{i} (-1)^j \binom{n-j}{n-i} v^j c_j^{ku}.
$$

and $\lambda_n = 1$.

Hence, the $c_j = c_j^{ku}$ generate, and $c_1 - vc_2 + \cdots + (-v)^{n-1}c_n = 0$. Thus $KU^*_{\text{SU}(n)}$ is polynomial on any $n - 1$ of c_1, \ldots, c_n. In particular, $KU^*_{\text{SU}(n)} = KU^*[c_2, \ldots, c_n]$.

Robert Bruner (Wayne State University)
Char classes: k of BG
Bergen
Proof.

(Cont.) The pullback square

\[
\begin{array}{ccc}
ku^*_{SU(n)} & \longrightarrow & KU^*[c_2, \ldots, c_n] \\
\downarrow & & \downarrow \\
k_u^*[\llbracket c_2, \ldots, c_n \rrbracket] & \longrightarrow & KU^*[\llbracket c_2, \ldots, c_n \rrbracket]
\end{array}
\]

shows that \(ku^*_{SU(n)} = ku^*[c_2, \ldots, c_n] \).
\[RU(U(n)) = \mathbb{Z}[\lambda_1, \ldots, \lambda_n, \lambda_n^{-1}] \]

The integral cohomology is
\[H^* BU(n) = \mathbb{Z}[c_1, \ldots, c_n] \]
where \(c_i = c_i(\lambda_1) \). Again, the complex connective \(K \)-theory follows immediately.

Theorem

\[ku^* BU(n) = ku^*[c_1, \ldots, c_n] \text{ and } \]
\[ku^*_U(n) = M\text{Rees}(RU(U(n))) = ku^*[c_1, \ldots, c_n, \Delta^{-1}] \]

where \(\Delta = \lambda_n = 1 - vc_1 + v^2 c_2 - \cdots + (-v)^n c_n \).

Proof.

The argument is nearly the same as for \(SU(n) \), except that \(KU^*_U(n) \) is not polynomial, but is instead \(KU^*[c_1, \ldots, c_n, \Delta^{-1}] \). \[\square \]
In cohomology, restriction along the inclusion $SU(n) \rightarrow U(n)$ is the quotient which sends c_1 to 0. The proper way to think of this is that we are taking the quotient by the determinant of the defining representation. In K-theory, the map this induces is more interesting.

Theorem

The restriction homomorphism $ku^*_U(n) \rightarrow ku^*_SU(n)$ is the quotient $ku^*[c_1, \ldots, c_n, \Delta^{-1}] \rightarrow ku^*[c_2, \ldots, c_n]$ which sends Δ to 1 and c_1 to $vc_2 - v^2c_3 + \cdots - (-v)^{n-1}c_n$.

Proof.

$SU(n)$ is the kernel of the determinant $U(n) \rightarrow U(1)$. The determinant sends $y = (1 - \lambda_1)/v \in ku^2_U(1)$ to $(1 - \lambda_n)/v = c_1 - vc_2 + v^2c_3 - \cdots$, so this must go to zero in $ku^*_{SU(n)}$. After dividing by this, we have an isomorphism, by the calculation of $ku^*_{SU(n)}$. □
Consider the conjugate Chern classes $\overline{c}_i(V) = c_i(\overline{V})$.

Proposition

Restriction $ ku^*_U(n) \longrightarrow ku^*_T(n) $ sends \overline{c}_i to $\sigma_i(\overline{y}_1, \ldots, \overline{y}_n)$. There is a relation

$$\Delta \overline{c}_i = \sum_{k=i}^{n} (-1)^k \binom{k}{i} v^{k-i} c_k$$

The conjugate $\overline{\Delta} = \overline{\lambda}_n = 1 - v\overline{c}_1 + v^2\overline{c}_2 - \cdots \pm v^n\overline{c}_n$ satisfies $\Delta \overline{\Delta} = 1$. Collecting terms we find

Proposition

In $ ku^*_U(n) $,

$$c_1 + \overline{c}_1 = - \sum_{k=2}^{2n} (-v)^{k-1} \sum_{i+j=k} c_i \overline{c}_j$$
\(RU(\text{Sp}(n)) = \mathbb{Z}[\lambda_1, \ldots, \lambda_n] \)

The \(\lambda_{2i} \) are real and the \(\lambda_{2i+1} \) are quaternionic, hence all are self conjugate.

Note that \(\lambda_1 = H^n = C^{2n} \), which is \(2n \) dimensional, but its higher exterior powers \(\lambda_{n+1}, \ldots \lambda_{2n} \) can be expressed in terms of the first \(n \).

The integral cohomology is

\[H^* B\text{Sp}(n) = \mathbb{Z}[p_1, \ldots, p_n] \]

with \(|p_i| = 4i \).

Restriction along \(\text{Sp}(1)^n \rightarrow \text{Sp}(n) \) will play much the same role for \(\text{Sp}(n) \) as restriction along \(T^n = U(1)^n \rightarrow U(n) \) plays for \(U(n) \), so we start by considering \(\text{Sp}(1)^n \).
\[RU(Sp(1)^n) = \mathbb{Z}[s_1, \ldots, s_n] \]

where
\[s_i : Sp(1)^n \xrightarrow{p_i} Sp(1) \cong SU(2) \subset U(2) \]

Hence \(c_{1}^{ku}(s_i) = \nu c_{2}^{ku}(s_i) \) and
\[\nu^2 c_{2}^{ku}(s_i) = \nu c_{1}^{ku}(s_i) = c_{2}^{R}(s_i) = c_{1}^{R}(s_i) = 2 - s_i. \]

Thus, we have classes \(z_i = c_{2}^{ku}(s_i) \in ku^4(BSp(1)^n) \) which satisfy
\[\nu^2 z_i = 2 - s_i. \]

We will see that \(z_i \) comes from \(ko^* \). The integral cohomology ring is
\[H^* BSp(1)^n = \mathbb{Z}[z_1, \ldots, z_n] \]

with \(z_i = p_1(s_i) \), the first Pontrjagin class of \(s_i \).
Theorem

There are compatible generators z_i so that

- $ku^* \text{BSp}(1)^n = ku^*[z_1, \ldots, z_n]$
- $ko^* \text{BSp}(1)^n = ko^*[z_1, \ldots, z_n]$
- $ku_{Sp(1)^n}^* = ku^*[z_1, \ldots, z_n] = \text{MRees}(RU(Sp(1)^n))$
- $ko_{Sp(1)^n}^* = ko^*[z_1, \ldots, z_n]$

In particular, $z_i^{ku} \in ku_{Sp(1)^n}^4$ and $z_i^{ko} \in ko_{Sp(1)^n}^4$ satisfy

- $\nu^2 z_i^{ku} = 2 - s_i \in ku_{Sp(1)^n}^0 = RU(Sp(1)^n)$,
- $\alpha z_i^{ko} = 2(2 - s_i) \in ko_{Sp(1)^n}^0 = RO(Sp(1)^n)$ and
- $\beta z_i^{ko} = 2 - s_i \in ko_{Sp(1)^n}^{-4} = RSp(Sp(1)^n)$.
Proof.

The Adams spectral sequence collapses at

$$E_{2,*,*}^* = H^*BSp(1)^n \otimes \text{Ext}_{\mathcal{A}(1)}^*(F_2, F_2) \implies ko^*BSP(1)^n$$

and similarly for $E(1)$ and ku^*.

The equivariant cases then follow by the defining pullback squares

$$
\begin{array}{ccc}
ku^*_{Sp(1)^n} & \rightarrow & KU^*[z_1, \ldots, z_n] \\
\downarrow & & \downarrow \\
kku^*[\llbracket z_1, \ldots, z_n \rrbracket] & \rightarrow & KU^*[\llbracket z_1, \ldots, z_n \rrbracket]
\end{array}
$$

The periodic groups are as claimed because we can change generators from the s_i to the $z_i = (2 - s_i)/\nu^2$. This is $\text{MRees}(RU(Sp(1)^n))$: all irreducible representations are two dimensional, so $JU_{2n} = JU_{2n-1} = (JU_2)^n$. \qed
Pontrjagin classes

Definition

The k^{th} representation theoretic Pontrjagin class of an n-dimensional symplectic representation $V : G \rightarrow Sp(n)$ is

$$p_k^R(V) = \sum_{j=0}^{k} (-1)^j 2^{k-j} \left(\begin{array}{c} n-j \\ n-k \end{array} \right) \wedge^j(V)$$

Proposition

The restriction $RU(Sp(n)) \rightarrow RU(Sp(1)^n)$ sends p_k^R to $\sigma_k(2 - s_1, \ldots, 2 - s_n)$. The representation p_k^R is real if k is even, and quaternionic if k is odd.

Accordingly, we shall generally consider p_{2i}^R as an element of $RO(G)$ and p_{2i+1}^R as an element of $RSp(G)$. Note, however, that representations which are not irreducible can be both real and quaternionic.
Theorem

We have

- \(ku^* BSp(n) = ku^*[[p_1, \ldots, p_n]] \)
- \(ko^* BSp(n) = ko^*[[p_1, \ldots, p_n]] \)
- \(ku_{Sp(n)}^* = ku^*[p_1, \ldots, p_n] \)
- \(ko_{Sp(n)}^* = ko^*[p_1, \ldots, p_n] \).

In each case, \(p_k \) restricts to \(\sigma_k(z_1, \ldots, z_n) \).

In \(ku^* \), \(v^{2k} p_k^{ku} = p_k^R \in ku_{Sp(n)}^0 = RU(Sp(n)) \).

In \(ko^* \), \(\beta^k p_{2k}^{ko} = p_{2k}^R \in ko_{Sp(n)}^0 = RO(Sp(n)) \) and \(\beta^k p_{2k+1}^{ko} = p_{2k+1}^R \in ko_{Sp(n)}^4 = JSp(Sp(n)) \).
Definition

Let $V : G \rightarrow Sp(n)$ be a symplectic representation. For $E = RU$, ko, KO, ku, KU or H, we define the *Pontrjagin class* $p^E_i(V) \in E^G_{4i}$ to be $V^*(p_i)$. It is convenient to collect these into the *total Pontrjagin class*

$$p^E_•(V) = 1 + p^E_1(V) + p^E_2(V) + \cdots + p^E_n(V)$$

and to let $p^E_i(V) = 0$ if $i > n$.

Corollary

$$p^E_•(V \oplus W) = p^E_•(V)p^E_•(W)$$
Lemma

The restriction \(ku_{Sp(1)^n}^* \to ku_{T(n)}^* \) maps \(z_i \) to \(y_i y_i \).

Write \(\overline{c}_i(V) = c_i(\overline{V}) \) for the Chern classes of the complex conjugate of a representation.

Theorem

The restriction maps \(ku_{U(2n)}^* \to ku_{Sp(n)}^* \to ku_{U(n)}^* \) obey

\[
\begin{align*}
c_k & \mapsto \sum_{0 \leq 2i \leq k} \binom{k-i}{i} v^{k-2i} p_{k-i} \\
& \mapsto \sum_{i+j=k} c_i \overline{c}_j.
\end{align*}
\]

Specializing to ordinary cohomology by setting \(v = 0 \) we obtain the usual relations (up to sign):

\[
q^*(p_n^H) = \sum_{i+j=2n} c_i^H \overline{c}_j^H = \sum_{i+j=2n} (-1)^i c_i^H c_j^H,
\]

\[
\overline{c}^*(c_{2i-1}) = 0, \quad \text{and} \quad \overline{c}^*(c_{2i}) = p_i.
\]
For $Sp(4)$, for example,

\[
\begin{align*}
 c_1 & \mapsto vp_1 \\
 c_2 & \mapsto p_1 + v^2 p_2 \\
 c_3 & \mapsto 2vp_2 + v^3 p_3 \\
 c_4 & \mapsto p_2 + 3v^2 p_3 + v^4 p_4 \\
 c_5 & \mapsto 3vp_3 + 4v^3 p_4 \\
 c_6 & \mapsto p_3 + 6v^2 p_4 \\
 c_7 & \mapsto 4vp_4 \\
 c_8 & \mapsto p_4
\end{align*}
\]

\[
\begin{align*}
 & \mapsto c_1 + \overline{c}_1 \\
 & \mapsto c_2 + c_1 \overline{c}_1 + \overline{c}_2 \\
 & \mapsto c_3 + c_2 \overline{c}_1 + c_1 \overline{c}_2 + \overline{c}_3 \\
 & \mapsto c_4 + c_3 \overline{c}_1 + c_2 \overline{c}_2 + c_1 \overline{c}_3 + \overline{c}_4 \\
 & \mapsto c_4 \overline{c}_1 + c_3 \overline{c}_2 + c_2 \overline{c}_3 + c_1 \overline{c}_4 \\
 & \mapsto c_4 \overline{c}_2 + c_3 \overline{c}_3 + c_2 \overline{c}_4 \\
 & \mapsto c_4 \overline{c}_3 + c_3 \overline{c}_4 \\
 & \mapsto c_4 \overline{c}_4
\end{align*}
\]
It is more difficult to get good expressions for the images of the individual p_i. However, for $i = 1$, using the fact that v acts monomorphically on $ku^*_U(n)$ we have

$$p_1 \mapsto \frac{c_1 + \bar{c}_1}{v} = \sum_{k=2}^{n} (-v)^{k-2} \sum_{i+j=k} c_i \bar{c}_j$$

$$= c_2 + c_1 \bar{c}_1 + \bar{c}_2 - v \sum_{k=3}^{n} (-v)^{k-3} \sum_{i+j=k} c_i \bar{c}_j.$$

In cohomology, where $v = 0$ and $\bar{c}_i = (-1)^i c_i$, we have

$$p_1 \mapsto c_2 + c_1 \bar{c}_1 + \bar{c}_2 = 2c_2 - c_1^2$$

with our normalization of the p_i. Thus, if $c_1 = 0$, then $c_2 = p_1/2$.
Finally, we provide the following *symplectic splitting principle*.

Theorem

Let ξ be an $Sp(n)$ bundle over X. Then there exists a map $f : Y \rightarrow X$ such that $f^*\xi$ is a sum of symplectic line bundles and $f^* : H^*X \rightarrow H^*Y$ is a monomorphism.

Proof.

Let Y be the pullback

\[
\begin{array}{ccc}
Y & \longrightarrow & BSp(1)^n \\
\downarrow f & & \downarrow \\
X & \longrightarrow & BSp(n)
\end{array}
\]

along the classifying map of the bundle ξ. The universal bundle over $BSp(n)$ splits as a sum of line bundles over $BSp(1)^n$, so $f^*\xi$ also splits in this manner.

The Serre spectral sequence gives the cohomology statement.
$RU(O(n)) = \mathbb{Z}[\lambda_1, \ldots, \lambda_n]/(\lambda_n^2 - 1, \lambda_i \lambda_n - \lambda_{n-i})$.

These representations are all real, so that complexification and quaternionification are isomorphisms

$$RO(O(n)) \xrightarrow{\sim} RU(O(n)) \xrightarrow{\sim} RSp(O(n)).$$

The integral cohomology is complicated. The best approach is to give the mod 2 cohomology, and if integral issues matter, the cohomology localized away from 2. We have

$$HF^*_2 BO(n) = F_2[w_1, \ldots, w_n]$$

where $w_i = w_i(\lambda_1)$.
Rewrite the representation ring in terms of Chern classes, as usual: let
\[c_i = c^K_i(\lambda_1) \in K^2_{O(n)}, \]
so that
\[\lambda_i = \sum_{j=0}^{i} (-1)^j \binom{n-j}{n-i} v^j c_j. \]

Rather than replace \(\lambda_n \) by the top Chern class, \(c_n \), we use the first Chern class of the determinant representation, \(c = c^K_1(\lambda_n) \in K^2_{O(n)} \). This satisfies \(vc = 1 - \lambda_n \), which is much more convenient than
\[v^n c_n = 1 - \lambda_1 + \cdots + (-1)^n \lambda_n. \]

Proposition

\[KU^*_O(2n+1) = KU^*[c_1, \ldots, c_n, c]/(vc^2 - 2c) \]

and

\[KU^*_O(2n) = KU^*[c_1, \ldots, c_n, c]/(vc^2 - 2c, c \sum_{i=0}^{n} \binom{2n-i}{n} (-v)^i c_i) \]
To compute $ku^* BO(n)$, we need to determine the $E(1)$-module structure of $HF_2^* BO(n)$. We start with its stable type. Let ϵ be 0 or 1.

First, the submodule

$$F_2[w_2^2, w_4^2, \ldots, w_{2n}^2] \longrightarrow H^* BO(2n + \epsilon)$$

is a trivial $E(1)$-submodule.

Second, the reduced homology of $BO(1)$ is the ideal (w_1) in $F_2[w_1]$, and as an $E(1)$-submodule,

$$(w_1) \otimes F_2[w_2^2, w_4^2, \ldots, w_{2n-2}^2] \longrightarrow H^* BO(2n - \epsilon)$$

is a direct sums of suspensions of (w_1).

The sum of these two submodules exhausts the ‘interesting’ part of $H^* BO(n)$, in the sense that the complementary summand is $E(1)$-free.
Theorem

The inclusions

\[\mathbf{F}_2[w_2^2, w_4^2, \ldots, w_{2n}^2] \oplus (w_1) \otimes \mathbf{F}_2[w_2^2, w_4^2, \ldots, w_{2n-2}^2] \to H^*BO(2n) \]

and

\[\mathbf{F}_2[w_2^2, w_4^2, \ldots, w_{2n}^2] \oplus (w_1) \otimes \mathbf{F}_2[w_2^2, w_4^2, \ldots, w_{2n}^2] \to H^*BO(2n + 1) \]

induce isomorphisms in \(Q_0 \) and \(Q_1 \) homology.

Corollary

As an \(E[Q_0, Q_1] \)-module, \(H^*BO(n) \) is the sum of trivial modules, suspensions of \(H^*BO(1) \), and free modules.

Proof.

The corollary follows by the result of Adams and Margolis, that \(Q_0 \) and \(Q_1 \) homology detects the stable isomorphism type of the module.
In principle, this describes $H^* BO(n)$ as an $E(1)$-module but finding a good parametrization of the complementary $E(1)$-free submodule is non-trivial. The $A(1)$-module structure is not as simple, as Sq^2 does not annihilate all squares. The w_{2i}^2 detect Pontrjagin classes p_i of the defining representation and w_1^2 in the (w_1) summand detects the first Chern class of the determinant representation.

Corollary

The Adams spectral sequence converging to $ku^ BO(n)$ collapses at E_2, and the natural homomorphism*

$$ku^* BO(n) \longrightarrow H^* BO(n) \oplus KU^* BO(n)$$

is a monomorphism.
Comments on the proof

The $H(-, Q_0)$ isomorphism is straightforward, but the $H(-, Q_1)$ isomorphism requires a careful choice of generators.

Once the correct generators are identified, it turns out that the general case is just a regraded version of $H^* BO(4)$ tensored with an $E(1)$-trivial subalgebra.

See the book with Greenlees for details.
Recall that $ku_{O(1)}^* = ku^*[c]/(vc^2 - 2c)$ by the pullback square

$$
ku_{O(1)}^* \rightarrow KU_{O(1)}^* = KU^*[c]/(vc^2 - 2c)
$$

$$
ku^* BO(1) = ku^*[c]/(vc^2 - 2c) \rightarrow KU^* BO(1) = KU^*[c]/(vc^2 - 2c)
$$

The Bockstein spectral sequence then gives

Theorem

There are unique elements $p_0 \in ko_{O(1)}^0$ and $p_1 \in ko_{O(1)}^4$ with complexifications $c(p_0) = vc$ and $c(p_1) = c^2$. The ring

$$
ko_{O(1)}^* = \frac{ko^*[p_0, p_1]}{(\eta p_1, \alpha p_1 - 4p_0, \beta p_1 - \alpha p_0, p_0 p_1 - 2p_1, p_0^2 - 2p_0)}
$$
In terms of representation theory, this can be written as follows.

Corollary

O(1)-equivariant connective real K-theory has coefficient ring

\[
ko^i_{O(1)} = \begin{cases}
RSp & i = -8k - 4 \leq 0 \\
RO/2 & i = -8k - 2 \leq 0 \\
RO/2 & i = -8k - 1 \leq 0 \\
RO & i = -8k \leq 0 \\
JSp_k = JSp^k & i = 4k > 0 \\
0 & \text{otherwise}
\end{cases}
\]

To justify the notation \(p_i \):

Theorem

The restriction \(ku^*_{Sp(1)} \to ku^*_{O(1)} *\) *is:*

\[
z = p_1(\lambda_1) \mapsto p_1, \quad \alpha z \mapsto 4p_0, \quad \text{and} \quad \beta z \mapsto \alpha p_0,
\]
Proof.

That z maps to p_1 is evident by comparison with ku^*. The rest follows by the relations in $ko^*_{O(1)}$.

Thus, p_1 really is the first Pontrjagin class of the quaternionic representation induced up from the defining representation of $O(1)$, while p_0 is a genuinely real class. We call it p_0 because of the relations which tie it to p_1.
O(2)

Corollary

\[
KU^*_O(2) = KU^*[c, c_1]/(vc^2 - 2c, c(2 - vc_1)) = KU^*[c, c_2]/(vc^2 - 2c, cc_2)
\]

Proof.

The calculation

\[
v^2 c_2 = 1 - \lambda_1 + \lambda_2 = 1 - (2 - vc_1) + (1 - vc) = v(c_1 - c)
\]

shows that \(c_1 = c + vc_2\). Then the relation \(0 = c(2 - vc_1)\) becomes \(v^2 cc_2 = 0\) since \(c(2 - vc) = 0\).

[\(\square\)]
The connective K-theory is similar but somewhat larger.

Theorem

$$ku^*_{O(2)} = ku^*[c, c_2]/(vc^2 - 2c, 2cc_2, vcc_2)$$

Proof.

Decomposing $H^*BO(2)$ as an $E[Q_0, Q_1]$-module shows that c and c_2 are algebra generators for $ku^*BO(2)$. The monomorphism into $H^*BO(2) \oplus KU^*BO(2)$ then shows the relations are complete. The pullback square then gives us $ku^*_{O(2)}$.

\[\square \]
The Bockstein spectral sequence then gives

Theorem

\[KO^*_O(2) = KO^*[p_0, r_0]/(p_0^2 - 2p_0, p_0r_0) \text{ and } \]

\[ko^*_O(2) = ko^*[p_0, p_1, p_2, r_0, r_1, s]/I \]

where \(I \) is the ideal generated by the relations

\[
\begin{array}{ccc}
\eta p_1 = 0 & \alpha p_1 = 4p_0 & \beta p_1 = \alpha p_0 \\
\eta r_1 = 0 & \alpha r_1 = 4r_0 & \beta r_1 = \alpha r_0 \\
\eta s = 0 & \alpha s = 0 & \beta s = \eta^2 r_0 \\
p_0p_2 = 0 & p_1p_2 = s^2 \\
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
p_0 & p_1 & r_0 & r_1 & s \\
\hline
p_0 & 2p_0 & 2p_1 & 0 & 0 & 0 \\
p_1 & 2p_1 & p_1^2 & 0 & 0 & p_1s \\
r_0 & 0 & 0 & \beta p_2 & \alpha p_2 & \eta^2 p_2 \\
r_1 & 0 & 0 & \alpha p_2 & 4p_2 & 0 \\
\hline
\end{array}
\]
p_0 and r_0 are $1 - \det$ and the Euler class of the defining representation, respectively.

p_1 and r_1 are their images in $JSp = ko^4$. This explains the similarity of the action of ko^* on them.

The class p_2 refines the square of the Euler class in the sense that $r_1^2 = 4p_2$, $r_0r_1 = \alpha p_2$ and $r_0^2 = \beta p_2$.

The class s is a square root of the product $p_1p_2 = s^2$.

The relation $\beta s = \eta^2 r_0$ is hidden in the Bockstein spectral sequence. Representation theory (i.e., the map into $KO^*_{O(2)}$) and the Adams spectral sequence each work to recover it.
Corollary

\[KU_{O(3)}^* = KU^*[c, c_1]/(vc^2 - 2c) \]

Proposition

\[KO_{O(3)}^* = KO^*[p_0, q_0]/(p_0^2 - 2p_0) \]
where \(p_0 \) and \(q_0 \) have complexifications \(vc \) and \(vc_1 \) respectively. The restriction \(KO_{O(3)}^* \rightarrow KO_{O(2)}^* \) sends \(p_0 \) to \(p_0 \) and \(q_0 \) to \(p_0 + r_0 \).

The Chern classes no longer suffice to generate \(ku_{O(n)}^* \) for \(n > 2 \). Let \(\overline{Q}_0 : H \rightarrow \Sigma HZ \) and \(\overline{Q}_1 : HZ \rightarrow \Sigma^3 ku \) be the boundary maps in the cofiber sequences for \(2 : HZ \rightarrow HZ \) and \(v : \Sigma^2 ku \rightarrow ku \). They are lifts of the Milnor primitives \(Q_0 \) and \(Q_1 \).
Definition

Let \(q_2 = \overline{Q}_1 Q_0(w_2) \in ku^6 BO(3) \) and \(q_3 = \overline{Q}_1 Q_0(w_3) \in ku^7 BO(3) \).

Proposition

The classes \(q_2 \) and \(q_3 \) are nonzero classes annihilated by \((2, v)\). The class \(q_3 \) is independent of \(c, c_2, \) and \(c_3 \), while \(q_2 = cc_2 - 3c_3 \). These are the only nonzero 2 or \(v \)-torsion classes in \(ku^6 BO(3) \) and \(ku^7 BO(3) \).

Theorem

\(ku^* BO(3) = ku^* [c, c_2, c_3, q_3]/R \), where \(R \) is an ideal containing \((vc^2 - 2c, 2(cc_2 - 3c_3), v(cc_2 - 3c_3), 2q_3, vq_3, vcc_3 - 2c_3)\).
O(n) for larger n

The free summands in $H^* BO(n)$ begin to get more complicated at $n = 4$. Let us write w_S for the product $\prod_{i \in S} w_i$.

Proposition

Maximal $E(1)$-free summands of $H^* BO(n)$ are:

- **$n = 4$**

 $$F_2[w_1^2, w_2^2, w_3^2, w_4^2] \langle w_2, w_3, w_4, w_234 \rangle$$

 $$\oplus F_2[w_1^2, w_2^2, w_4^2] \langle w_24 \rangle$$

- **$n = 5$**

 $$F_2[w_1^2, w_2^2, w_3^2, w_4^2, w_5^2] \langle w_2, w_3, w_4, w_5, w_234, w_{235}, w_{245}, w_{345} \rangle$$

 $$\oplus F_2[w_1^2, w_2^2, w_4^2, w_5^2] \langle w_24, w_{34} \rangle$$

- **$n = 6$**

 $$F_2[w_1^2, w_2^2, w_3^2, w_4^2, w_5^2, w_6^2] \langle w_2, w_3, w_4, w_5, w_6, w_{234}, w_{235}, w_{236}, w_{245}, w_{246}, w_{256}, w_{345}, w_{346}, w_{356}, w_{456}, w_{3456} \rangle$$

 $$\oplus F_2[w_1^2, w_2^2, w_3^2, w_4^2, w_5^2, w_6^2] \langle w_{236}, w_{246}, w_{256}, w_{346}, w_{456}, w_{23456} \rangle$$

 $$\oplus F_2[w_1^2, w_2^2, w_4^2, w_5^2, w_6^2] \langle w_{24}, w_{34}, w_{2456} \rangle$$

 $$\oplus F_2[w_1^2, w_2^2, w_4^2, w_5^2, w_6^2] \langle w_{46} \rangle$$
Remark

Each w_S generating a free $E(1)$ will give rise to a $(2, ν)$-annihilated class $Q_1Q_0(w_S) \in ku^*BO(n)$.
\[RU(SO(2n + 1)) = \mathbb{Z}[\lambda_1, \ldots, \lambda_n] \]

with \(\lambda_{n+i} = \lambda_{n+1-i} \) and

\[RU(SO(2n)) = \mathbb{Z}[\lambda_1, \ldots, \lambda_{n-1}, \lambda_n^+, \lambda_n^-]/R \]

with \(\lambda_{n+i} = \lambda_{n-i} \) and \(\lambda_n = \lambda_n^+ + \lambda_n^- \). The ideal \(R \) is generated by one relation

\[
(\lambda_n^+ + \sum_i \lambda_{n-2i})(\lambda_n^- + \sum_i \lambda_{n-2i}) = (\sum \lambda_{n-1-2i})^2
\]

All the \(\lambda_i \) are real. \(RU(SO(2n)) \) is free over \(RU(SO(2n + 1)) \) on \(\{1, \lambda_n^+\} \).
$H^* BSO(n) = F_2[w_2, \ldots, w_n]$ where $w_i = w_i(\lambda_1)$.

We have already examined $SO(2) = T(1)$ and found (writing c_1 rather than y_1 here)

$$ku^*_{SO(2)} = ku^*[c_1, \bar{c}_1]/(vc_1\bar{c}_1 = c_1 + \bar{c}_1)$$

and

$$ku^* BSO(2) = ku^*[[c_1]].$$

The maps induced in ku^* by the fibre sequence $SO(2) \xrightarrow{i} O(2) \xrightarrow{\text{det}} O(1)$ are

Proposition

$\det^*(c) = c$, while $i^*(c) = 0$, $i^*(c_2) = c_1\bar{c}_1$ and $i^*(c_1) = i^*(c + vc_2) = c_1 + \bar{c}_1$.
SO(3)

\[RU(SO(3)) = \mathbb{Z}[\lambda_1] \text{ with } \lambda_2 = \lambda_1 \text{ and } \lambda_3 = 1. \]

Proposition

\[KU^*_{SO(3)} = KU^*[c_2] \]

Proof.

The Chern classes of the defining representation of \(SO(3) \) satisfy \(c_1 = vc_2, \ c_3 = 0 \) and \(v^2c_2 = vc_1 = 3 - \lambda_1 \).

Theorem

\[ku^*_{SO(3)} = ku^*[c_2, c_3]/(2c_3, vc_3). \]

The first Chern class, \(c_1 = vc_2 \). The restriction \(ku^*_{O(3)} \to ku^*_{SO(3)} \) sends \(c \) and \(q_3 \) to 0, and sends each \(c_i \) to \(c_i \).
Proof.

The Adams spectral sequence again collapses and gives us a monomorphism into the sum of mod 2 cohomology and periodic K-theory. This makes it easy to show $\text{ku}^* \text{BSO}(3) = \text{ku}^*[c_2, c_3]/(2c_3, \nu c_3)$. The pullback square then gives $\text{ku}^*_\text{SO}(3) = \text{ku}^*[c_2, c_3]/(2c_3, \nu c_3)$.

In general, we expect $c_1 = \nu c_2 - \nu^2 c_3$, since this is true in $SU(n)$, but here $\nu^2 c_3 = 0$.

The restriction from $O(3)$ is computed by using the monomorphism to periodic K-theory plus mod 2 cohomology. Note that $q_2 = cc_2 - 3c_3$ restricts to c_3.
Thank you