A NEW DIFFERENTIAL IN THE ADAMS SPECTRAL SEQUENCE

ROBERT BRUNER

(Received 1 August 1983)

§1. INTRODUCTION

In a series of papers [1,6,14,15], Barratt et al. used the Adams spectral sequence to determine the 2 component of π_nS^0 for $29 \leq n \leq 45$ together with a number of products and Toda brackets in this range. In this paper we show that there is an additional nonzero differential and determine its implications for products and Toda brackets.

We give Makinen's general formula in §2. We then collect some known calculations in the Adams spectral sequence for π_nS^0 in §3. Our new results are presented in §4, while §5 contains new proofs of results whose published proofs rely on the mistake we are correcting.

§2. THE GENERAL FORMULA

Let A be the mod 2 Steenrod algebra which operates on the cohomology of topological spaces. Let $\{E_r^n\}$ be the Adams spectral sequence

$$E_2^{s,n} = \text{Ext}^{s}_A(\mathbb{Z}_2, \mathbb{Z}_2) \Rightarrow \pi_nS^0.$$

We will index the Steenrod operations in Ext so that

$$S_q^i : \text{Ext}^{s,t} \rightarrow \text{Ext}^{s+1,t+i}.$$

To state the general formula for differentials, the following convention is convenient. If the elements a, b, and b_2 are in filtrations $s, s + r_1$, and $s + r_2$, respectively, then

$$d_a = b_1 + b_2$$

means

$$d_a = b_1 \quad \text{if} \quad r_1 < r_2,$$
$$d_a = b_1 + b_2 \quad \text{if} \quad r = r_1 = r_2,$$
$$d_a = b_2 \quad \text{if} \quad r > r_2.$$

We also need a function which occurs in the study of reducibility of stunted projective spaces and of vector fields on spheres.

Definition 2.1. $v(n) = 8a + 2^b$ if the exponent of 2 in the prime factorization of $n + 1$ is $4a + b$ with $0 \leq b \leq 3$.

If $v = v(n)$ then the attaching map of the n cell of RP^n factors through RP^{n^*-i-1} but not through PR^{n*-i-1}.

The following result was first proved by Makinen [7]. The author has generalized it to
the Adams spectral sequence

$$\text{Ext}^{p,r}_{E_*} (E_* Y, E_* Y) \to \pi_* Y$$

for any H_* ring spectrum Y and ring spectrum E for which $E_* E$ is $*$ flat [2].

Theorem 2.2. Let $x \in E^p_{\infty}$. Then

$$d_* Sq^i x = Sq^{i+1} \cdot d_* x + \begin{cases} 0 & v > k + 1 \text{ or } 2r - 2 < v < k \\ axd, x & v = k + 1 \\ a Sq^{i+r} x & v = k \text{ or } (v < k \text{ and } v \leq 10) \end{cases}$$

where $k = s - i, v = v(n + k)$ and $a \in E^{s, n - 1}_* \text{ detects a generator of } \text{Im } J \text{ in } \pi_{s-n} S^0$.

The contrast between Steenrod operations and Massey products is instructive. (We mean matrix Massey products, of course.) Every element of $\text{Ext}_{s+1} Y$, $s > 1$, is decomposable as a Massey product, typically in many different ways. Decomposability in terms of the Steenrod operations is comparatively rare. On the other hand, Massey products have indeterminacy, a complication which Steenrod operations do not share. Finally, there are formulas analogous to Theorem 2.2 for differentials on Massey products; however there are rather stringent conditions which must hold before they apply. In practice, Massey products and Steenrod operations seem complementary, each answering questions the other finds difficult.

§3. THE ELEMENTS IN QUESTION

Table 1 contains the elements of $\pi_5 S^0$ and of $\text{Ext}_{s} (Z_2, Z_2)$ with which we shall be concerned. The names for elements of $\pi_5 S^0$ are those used by Toda[16] with three exceptions. Our η_4 is called η^* in [16] and η_1 in [1], but has more recently been called η_4[5].

The elements θ_i and t are beyond the range of Toda's calculations, but are unambiguous since π_{50} and π_{30} are each Z_2.

Theorem 3.1. The following products are zero in $\pi_5 S^0$: (i) $2 \eta_4, v \eta_4, 2 \sigma^2, \pi q^2, \nu_6, (ii) \rho_4 \eta_4, \eta_4^2$. (iii) $\eta^\theta_4, \sigma^7 \eta_4, 2 \delta, \sigma \delta$.

Proof. (i) and (ii) may be found in [16] and [1], respectively. In (iii) $\sigma^7 \eta_4 = 0$ for filtration reasons, while $a^2 \theta_4 \in \eta \langle 2, \sigma^2, \eta_4 \rangle = \{0\}$, $2 \delta \in \langle \nu, \eta, \sigma^2 \rangle = \{0\}$ and $a \delta = a \langle \nu, \eta, \sigma^2 \rangle = \{0\}$ by the next theorem.

Theorem 3.2. (i) $\delta = \langle \nu, \eta, \nu \rangle \mod 0$. (ii) $\delta = \langle \nu, \eta, \sigma^2 \rangle \mod 0$. (iii) $\eta_4 \sigma \eta_4 = \langle \eta_1, 2, \sigma^2 \rangle$. (iv) $\eta \theta_4 = \langle \sigma^2, 2, \eta_4 \rangle \mod 0, \eta \theta_4 = \langle 2, \sigma^2, \eta_4 \rangle \mod 2 J_1$.

Proof. (i) and (ii) may be found in [16], while (iii) and (iv) are in [1]. Note that (iii) and (iv) both follow from the differential $d_3 \delta_4 = h_0 h_1 \delta_4$ by Moss' convergence theorem [12].

Theorem 3.3. In $\text{Ext}_{s} (Z_2, Z_2)$ (i) $h_0 h_2 = \langle h_2, h_1, h_2 \rangle \mod 0$. (ii) $e_0 = \langle h_2, c_0, h_2, h_1 \rangle \mod 0$, $e_1 = \langle c_2, h_1, h_2, h_2 \rangle$. (iii) $f_0 = \langle h_0^2, h_2, h_2 \rangle \mod h_0^2 h_2 h_4$. (iv) $c_1 = \langle h_2, h_1, h_2 \rangle \mod 0$. (v) $e_0 = \langle h_0, h_1, h_2, h_2 \rangle \mod 0$, $e_1 = \langle h_1, h_2, h_1, h_2 \rangle$.

Proof. All but (v) follow from the May spectral sequence [10] via results in [9]. (v) occurs in [15] where it is attributed to Zachariou. We give a quick proof due to Mahowald here.
Since e_0 is the only nonzero element in its bidegree, and $h_2e_0 = h_3f_0$, it suffices to note that

$$h_i(h_0, h_1, h_2, h_3) = \langle \langle h_1, h_0, h_1 \rangle, h_0^2, h_3^3 \rangle$$

$$= \langle h_0h_2, h_0^2, h_3^3 \rangle$$

$$= h_0\langle h_3, h_0^2, h_3 \rangle$$

$$= h_0\langle h_0h_3, h_3, h_3 \rangle + h_0\langle h_3, h_2, h_0h_3 \rangle$$

$$= h_0\langle h_0^2, h_2^2, h_3 \rangle + h_0h_2h_4$$

$$= h_0f_0.$$

Theorem 3.4.

$$Sq^i d_0 = \begin{cases} d_0^2 & \text{if } i = 4 \\ 0 & \text{if } i = 3 \\ r & \text{if } i = 2 \\ 0 & \text{if } i = 1 \end{cases}$$

and

$$Sq^i e_0 = \begin{cases} e_0^2 & \text{if } i = 4 \\ m & \text{if } i = 3 \\ t & \text{if } i = 2 \\ x & \text{if } i = 1 \\ e_1 & \text{if } i = 0 \end{cases}$$

Proof. This can be found in Milgram [11] or Mukohda [13].

Note. We will have no occasion to use the elements m and r here, so have omitted them from Table 1.
THEOREM 3.5. $d_2e_0 = h_1^2d_0$

Proof. This may be found in [8]. Alternatively, it follows from the algebra structure of Ext and Theorem 2.2 applied to c_0.

§4. NEW RESULTS

We begin with the result from which all the others will follow.

THEOREM 4.1. $d_3e_i = h_it - h_i^3n$

Proof. By Theorems 2.2 and 3.5,

$$d_3e_i = d_Sq^i e_0 = Sq^1(h_i^2d_0) + h_i Sq^2 e_0 = 0 + h_it = h_it.$$

Note that $+$ means $+$ here because both terms are in filtration 7. The relation $h_it = h_i^3n$ can be found in [14].

Theorem 4.1 corrects Theorem 8.6.6 and Corollary 8.6.4 of [6].

COROLLARY 4.2. (i) $\pi_{5h}S^0 = Z_4 + Z_2$, generated by $\{h_i^2h_jh_k\}$ and $\nu^3\{d_i\} = \{h_i^2d_i\}$ respectively. (ii) $\pi_{77}S^0 = Z_2^2$, generated by $\{h_i^2h_j\}$ and $\{x\}$. (iii) $nt - \nu^3|n| = 0$.

Proof. This is immediate from [6] and [1] as amended by Theorem 4.1.

This corollary corrects Theorem 1.1.1 and Proposition 7.3.5 of [6] and §4 of [1]. For completeness we include as Table 2 a list of the groups π_nS^0, $29 \leq n \leq 45$. This replaces Table 1.1.2 of [6], incorporating the changes required by [1] and Corollary 4.2. The homotopy groups given in §4 of [1] are correct once ηt and e_i are removed from π_{37} and π_{38}, respectively.

COROLLARY 4.3. (i) $\langle \sigma, \tilde{\sigma}, \sigma \rangle = \nu|n|$. (ii) $\langle \nu, \eta^2, \eta \rangle = t \mod 0$. (iii) $\langle \nu, \eta_4, \eta_6 \rangle = t \mod 0$. (iv) $\langle \tilde{\sigma}, 2, \eta_4 \rangle = 0 \mod 0$.

Proof. We will show (i) and (ii) by the Leibniz formula for Massey products ([9], Theorem 4.5), as extended to Toda brackets and the Adams spectral sequence by Kochman [4]. The theorem as stated in [4] or [9] contains a number of technical hypotheses which guarantee that there will be no "interference" preventing the differential from taking the desired form. In both (i) and (ii) one of these hypotheses fails and we must verify by hand that such interference does not occur. Specifically, for (ii) we must show that there is a nullhomotopy of $\langle \eta, \nu, \eta^2 \rangle$ in filtration 2 modulo filtration 5. The corresponding Massey
product \(\langle h_1, h_2, h_3 \rangle \) is zero in \(E_2 \) but this only gives us a nullhomotopy in filtration 2 modulo filtration 4. We must avoid the possibility that \(\langle \eta, \nu, \eta' \rangle \) will show up as a nonzero element of \(E_2 \) in filtration 4. Since \(\langle \eta, \nu, \eta' \rangle = \nu^2 \), we have \(\langle \eta, \nu, \eta' \rangle = \nu \eta' = 0 \). If we use a nullhomotopy of \(\eta \nu \) composed with \(\nu \) as our nullhomotopy of \(\langle \eta, \nu, \eta' \rangle \), there is no problem. Similarly, in (i) we must show that there is a nullhomotopy of \(\langle \sigma, \tau, \nu \rangle \) in filtration 3 modulo filtration 6. We can accomplish this by showing that there are nullhomotopies of \(c_i h_3 \) in filtration 3 modulo filtration 5 and of \(h_3 h_i \) in filtration 1 modulo filtration 3. The Leibniz formula then says

\[
d d e_1 = d_3(h_3, c_1, h_3, h_2) - Y_1 h_2 + h_3 Y_2
\]

where \(Y_1 \) detects \(\langle \sigma, \tau, \nu \rangle \) and \(Y_2 \) detects \(\langle \sigma, \tau, \nu \rangle \). Since \(Y_1, Y_2 = 0 \) for filtration reasons, \(Y_2 = 0 \). Theorem 4.1 then implies \(Y_1 = h_2 h_4 \), establishing (i). Similarly,

\[
d d e_1 = d_3(h_3, h_2, h_3 \nu, h_2 \nu) = Y_1 h_4^2 + h_1 Y_2
\]

where \(Y_1 \) detects \(\langle \eta, \nu, \nu^2 \rangle \) and \(Y_2 \) detects \(\langle \nu, \nu, \theta_4 \rangle \). Since \(Y_1 = 0 \), it follows that \(Y_2 = \tau_4 \), establishing (ii).

We would prove (iii) by the same technique applied to the Massey product \(\langle h_1, h_2, h_3 h_4, h_2 h_3 \rangle \) if this Massey product could be formed. However, \(\langle h_1, h_2, h_3 h_4 \rangle = h_3^2 h_4 = h_4 \neq 0 \), so it cannot be formed. Instead, we use the Jacobi identity and Theorem 3.2 to conclude that

\[
0 \in \langle \langle v, \eta, 2 \rangle, \sigma_2, \eta_4 \rangle + \langle \langle \eta, 2, \sigma_2 \rangle, \eta_4 \rangle + \langle \langle v, \eta, 2, \sigma_2 \rangle, \eta_4 \rangle
\]

\[
- \langle \langle v, \eta, \nu, \eta \theta_4 \rangle + \langle v, \eta, \nu, \eta \theta_4 \rangle + \langle v, \nu, \nu, \theta_4 \rangle + \langle \langle \nu, \eta, \eta \theta_4 \rangle + \langle \langle \nu, \eta, \eta \theta_4 \rangle + \langle \langle \nu, \nu, \nu \theta_4 \rangle + \langle \langle \nu, \nu, \nu \theta_4 \rangle
\]

checking that the indeterminacies of the inner brackets disappear since \(\langle v, \eta \rho, \eta_4 \rangle = \langle v, \eta \rho, \eta_4 \rangle = 0 \) by Theorem 3.1, and \(\langle \langle \sigma, \nu, \nu \rangle = 0 \) since \(\nu_3 = 0 \). This proves (ii).

For (iv) we again use the Jacobi identity and Theorems 3.1 and 3.2 to conclude that

\[
0 \in \langle \langle \eta, \nu, 2 \rangle, \sigma_2, \eta_4 \rangle + \langle \langle \eta, \sigma_2, 2 \rangle, \eta_4 \rangle + \langle \langle v, \eta, 2, \sigma_2 \rangle, \eta_4 \rangle
\]

\[
= \langle \langle \tau, 2, \eta_4 \rangle + \langle \langle v, \eta, \eta \theta_4 \rangle + \langle \langle v, \eta, \eta \theta_4 \rangle + \langle \langle \nu, \nu, \nu \theta_4 \rangle + \langle \langle \nu, \nu, \nu \theta_4 \rangle
\]

The indeterminacies in (ii)-(iv) are zero because all products in \(\pi_{36} \) are 0.

Corollary 4.3 corrects the presumption in [1] that the brackets in (i)-(iii) are zero. (They would have to be 0 if \(\nu^2 \eta_4 \neq 0 \).) The bracket in (iv) is new.

\section{New Proofs}

The differentials \(d_3(h_3 h_4) = 0 \) and \(d_4(h_3 h_4) = h_0 x \) in \(E_7 \) of [6] were proved using the false Proposition 7.3.5 (which stated that \(\pi_{37} \) had three generators). However, these differentials are forced by the other differentials involving the 37 stem and the fact that \(\sigma \theta_4 \neq 0 \). Specifically, the differentials \(d_3 P^1 k = h_0 P^2 g \) ([6], 1.1.5), \(d_3 y = h_0 y \) \((6, 5.1.4), d_4 e_1 = h_1 t \) (Theorem 4.1) and \(d_4 e_2 = P^2 g \) ([6], 4.2.1) imply that if \(d_3(h_3 h_4) = 0 \) then \(\pi_{37} = \mathbb{Z}_2 \), generated by \(h_3^2 h_4 \). This would imply that \(\sigma \theta_4 = 0 \), contradicting ([6], 7.3.2). Thus \(d_3(h_3 h_4) = 0 \).

To see that \(d_4(h_3 h_4) = h_0 x \) we need only show that \(\sigma \theta_4 \) is detected by \(x \), since \(2 \theta_4 = 0 \) then forces \(h_0 x \) to be killed by something, and \(h_3 h_4 \) is the only candidate. In Ext for the cofiber of \(\sigma \) there is a differential \(d_4(h_3^2) = x \) ([6], Lemma 7.3.1), where \(h_3^2 \) projects to \(h_3^2 \) on the top cell. It then follows by a standard lemma about homotopy exact couples that \(x \) detects the composite of \(\sigma \) and \(\theta_4 \) (see [3], Theorem 1.24 for a proof in the case of Adams spectral sequences for cohomotopy).
Proposition 3.1.5 of [1] gives the Toda brackets

$$\langle \tilde{v}, \sigma, \tilde{\kappa} \rangle = \langle \tilde{\eta}, \eta, v \rangle = t \mod 0,$$

where $\tilde{\eta} = \langle v, u, \tilde{\kappa} \rangle$. The claim that $\eta t \neq 0$ was used to show the indeterminacies are 0 and to establish the first bracket. The second bracket follows from the relation $h_2^2 \eta = h t$ as in [1]. With the correct relation $\eta t = 0$, it is still easy to verify that all products in π_{16} are 0; the only nontrivial case, $\nu | p | = 0$, following from the bracket $\langle \eta_4, \eta_4, 2 \rangle \subset \langle p \rangle ([1], 3.3.3)$. (Recall that η_i is called η_i in [1].) Thus, all three fold brackets in π_{16} have 0 indeterminacy. The first bracket follows by a manipulation:

$$\langle \tilde{v}, \sigma, \tilde{\kappa} \rangle = \langle \langle v, \eta, \nu \rangle, \sigma, \tilde{\kappa} \rangle$$
$$= \langle v, \eta, \langle v, \sigma, \tilde{\kappa} \rangle \rangle$$
$$= \langle v, \eta, \tilde{\eta} \rangle$$

using $\tilde{\eta} = \langle v, \nu, \nu \rangle$ and $\langle \eta, \nu, \sigma \rangle \in \pi_{12} = 0$ from [16].

Another change required in [1] is the elimination of Proposition 3.5.4. which asserts that $\langle \eta_4, \eta_4, \nu, \sigma \rangle = \{ g_7 \}$. In fact, Corollary 4.3 implies that the four fold bracket cannot be constructed.

Finally, $\eta \{ g_2 \}$ cannot be decomposed as $\sigma \{ e_i \}$ as claimed in §4 of [1], since e_i is not a permanent cycle. Similarly, there is no extension question between e_i and $h_2^2 d_i$, eliminating the need for Part 1 of [15].

The author knows of no other significant changes in [1], [6] or [15] forced by the new differential.

Acknowledgements — I am indebted to Mark Mahowald and Peter May for numerous helpful conversations and in particular for explaining the Toda bracket implications to me.

REFERENCES