Superconvergence of the Direct Discontinuous Galerkin Method for Convection-Diffusion Equations

Waixiang Cao,1 Hailiang Liu,2 Zhimin Zhang1,3

1 Division of Applied and Computational Mathematics, Beijing Computational Science Research Center, Beijing 100193, China
2 Department of Mathematics, Iowa State University, Ames, Iowa 50011
3 Department of Mathematics, Wayne State University, Detroit, Michigan 48202

Received 12 October 2015; accepted 6 July 2016
Published online 23 July 2016 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/num.22087

This paper is concerned with superconvergence properties of the direct discontinuous Galerkin (DDG) method for one-dimensional linear convection-diffusion equations. We prove, under some suitable choice of numerical fluxes and initial discretization, a $2k$-th and $(k + 2)$-th order superconvergence rate of the DDG approximation at nodes and Lobatto points, respectively, and a $(k + 1)$-th order of the derivative approximation at Gauss points, where k is the polynomial degree. Moreover, we also prove that the DDG solution is superconvergent with an order $k + 2$ to a particular projection of the exact solution. Numerical experiments are presented to validate the theoretical results.

Keywords: convection-diffusion equations; direct discontinuous Galerkin methods; superconvergence

I. INTRODUCTION

In this paper, we study the superconvergence of the direct discontinuous Galerkin (DDG) method for the one-dimensional linear convection-diffusion equation

$$\partial_t u + \partial_x f(u) = \partial_x^2 u, \quad (x, t) \in [a, b] \times [0, T],$$

$$u(x, 0) = u_0(x), \quad x \in [a, b],$$

(1.1)