MAT 1800 Final Exam

SHOW ALL WORK IN A BLUE BOOK: Only minimal credit will be awarded for answers without supporting work. DO NOT USE A CALCULATOR.

(08) 1. Let \(f(x) = 2x + \sqrt{5 - 4x} \). Find all numbers \(x \) such that \(f(x) = 1 \).

(08) 2. Graph: \(f(x) = \begin{cases}
 x - 1 & \text{if } x \leq -2 \\
 |x| - 1 & \text{if } -2 < x < 3 \\
 2 & \text{if } x \geq 3
\end{cases} \)

(08) 3. Find the domain of the function given by: \(f(x) = \frac{\ln(x + 9)}{|x + 3| - 4} \)

(08) 4. Let \(f(x) = x^2 - 1 \) and \(g(x) = \sqrt{x + 3} \). Find and simplify completely:

\[
\begin{align*}
(\text{a}) & \quad \frac{(f \circ g)(1)}{f(1) + g(1)} \\
(\text{b}) & \quad \frac{f(x) - 3}{f(x + 3)}
\end{align*}
\]

(08) 5. The graph of a function \(f \) contains the following points: \((-1, 5)\), \((0, 7)\) and \((2, 12)\). The graphs of the functions \(g \), \(h \), \(j \) and \(k \) contain the points as listed. Which of the functions \(g \), \(h \), \(j \) and \(k \) could be \(f^{-1} \)?

\[
\begin{align*}
g : & \quad (5, -1), (3, -\frac{3}{2}), (0, -2) \\
h : & \quad (7, 0), (1, -2), (3, -2) \\
j : & \quad (7, 0), (-4, -4), (5, -2) \\
k : & \quad (0, -5), (3, -\frac{3}{2}), (1, -\pi)
\end{align*}
\]

(08) 6. For each part, give a function \(f \), by writing a formula for \(f(x) \), that satisfies the given conditions.

\[
\begin{align*}
(\text{a}) & \quad \text{The function } f \text{ is a root function with } f(8) = 2. \\
(\text{b}) & \quad \text{The function } f \text{ is undefined at } x = 0, \pm \pi, \pm 2\pi, \pm 3\pi \ldots \text{ and } f(\frac{x}{2}) = 1.
\end{align*}
\]
7. Give a reasonable formula for each function whose graph is shown here:

(a)

(b)

8. The graph of a function f is a line such that $f(2) = 3$ and $f(2) + f(3) = 5$. Find the function f.

9. A rock is thrown straight up in the air. The height in meters of the rock t seconds after being thrown is given by the function $h(t) = -5t^2 + 30t + 10$.
 (a) What is the maximum height reached by the rock?
 (b) How many seconds after being thrown does the rock reach this height?

10. Graph $f(x) = -x^3 + x^2 + 20x$, finding and labeling all intercepts and asymptotes, if any.

11. Given that $x^2 + 1$ is a factor of the polynomial $x^4 - 2x^3 - x^2 - 2x - 2$, find all roots of the equation $x^4 - 2x^3 - x^2 - 2x - 2 = 0$. Express any non-real roots in the form $a + bi$.
12. The range R of a projectile is directly proportional to the square of its velocity V. Suppose that the projectile has a range of 100 feet when it is traveling at a velocity of 30 feet/second.
 (a) Express R as a function of V.
 (b) What is the velocity of a projectile whose range is 900 feet?

13. Graph $f(x) = \frac{x}{x^2 - 4}$, finding and labeling all intercepts and asymptotes, if any.

14. Let $f(x) = 4e^{-2x^3} - 6$. Find all numbers x, if there are any, such that $f(x) = 2$.

15. Graph $f(x) = e^{x^3} + 2$, finding and labeling all intercepts and asymptotes, if any.

16. Simplify completely:
 (a) $e^{-2\ln(\sqrt[3]{2})}$
 (b) $2\log_2(5) + 3\log_5(2^{10})$

17. Solve: $\ln(x - 4) - \ln(3) + \ln(x - 2) = 0$

18. A culture of bacteria grows exponentially according to the function $n(t) = n_0e^{t\ln(3)}$, where $n(t)$ is the quantity of bacteria present t days after the initial observation and n_0 is the initial quantity. How long does it take the culture to grow to 9 times its original size? Simplify your answer.

19. Find the exact value, if it exists: (a) \(\cot(\frac{10\pi}{3})\) (b) \(\sin(-\frac{13\pi}{4})\)

20. Place each of the given numbers on the number line shown below. (Copy the number line on your answer sheet.)
 (a) $\ln(2.9)$ (b) $\sin(3.2)$ (c) $\cos(-6)$

21. If $\cot(\theta) = 5$ and $\sec(\theta) < 0$, find $\cos(2\theta)$.

22. Let $g(x) = -\tan(2x - \frac{\pi}{2})$. Graph g over one complete cycle, labeling the intercepts and asymptotes, if any.

23. A point P has polar coordinates $(2, \frac{4\pi}{3})$.
 (a) Find another polar representation of P.
 (b) Find the rectangular coordinates of P.

24. Find the exact value:
 (a) $\arcsin[\sin(\frac{5\pi}{6})]$ (b) $\sin[\arcsin(-\frac{\sqrt{3}}{2})]$\]

25. Prove the identity: $\csc(x) - \cot(x)\cos(x) = \sin(x)$